Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 8 of 8 results
1.

The bright frontiers of microbial metabolic optogenetics.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Chem Biol, 11 Sep 2022 DOI: 10.1016/j.cbpa.2022.102207 Link to full text
Abstract: In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
2.

Shedding light on current trends in molecular optogenetics.

blue green red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Chem Biol, 18 Aug 2022 DOI: 10.1016/j.cbpa.2022.102196 Link to full text
Abstract: Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
3.

Induced proximity tools for precise manipulation of lipid signaling.

blue Cryptochromes LOV domains Review
Curr Opin Chem Biol, 22 Jul 2021 DOI: 10.1016/j.cbpa.2021.06.005 Link to full text
Abstract: Lipids are highly dynamic molecules that, due to their hydrophobicity, are spatially confined to membrane environments. From these locations, certain privileged lipids serve as signaling molecules. For understanding the biological functions of subcellular pools of signaling lipids, induced proximity tools have been invaluable. These methods involve controlled heterodimerization, by either small-molecule or light triggers, of functional proteins. In the arena of lipid signaling, induced proximity tools can recruit lipid-metabolizing enzymes to manipulate lipid signaling and create artificial tethers between organelle membranes to control lipid trafficking pathways at membrane contact sites. Here, we review recent advances in methodology development and biological application of chemical-induced and light-induced proximity tools for manipulating lipid metabolism, trafficking, and signaling.
4.

A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.

blue cyan BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Chem Biol, 4 Dec 2018 DOI: 10.1016/j.cbpa.2018.11.010 Link to full text
Abstract: Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
5.

Engineering genetically-encoded tools for optogenetic control of protein activity.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
Curr Opin Chem Biol, 17 May 2017 DOI: 10.1016/j.cbpa.2017.05.001 Link to full text
Abstract: Optogenetic tools offer fast and reversible control of protein activity with subcellular spatial precision. In the past few years, remarkable progress has been made in engineering photoactivatable systems regulating the activity of cellular proteins. In this review, we discuss general strategies in designing and optimizing such optogenetic tools and highlight recent advances in the field, with specific focus on applications regulating protein catalytic activity.
6.

Go in! Go out! Inducible control of nuclear localization.

blue red UV LOV domains Phytochromes UV receptors Review
Curr Opin Chem Biol, 30 Jun 2016 DOI: 10.1016/j.cbpa.2016.06.009 Link to full text
Abstract: Cells have evolved a variety of mechanisms to regulate the enormous complexity of processes taking place inside them. One mechanism consists in tightly controlling the localization of macromolecules, keeping them away from their place of action until needed. Since a large fraction of the cellular response to external stimuli is mediated by gene expression, it is not surprising that transcriptional regulators are often subject to stimulus-induced nuclear import or export. Here we review recent methods in chemical biology and optogenetics for controlling the nuclear localization of proteins of interest inside living cells. These methods allow researchers to regulate protein activity with exquisite spatiotemporal control, and open up new possibilities for studying the roles of proteins in a broad array of cellular processes and biological functions.
7.

Light-controlled synthetic gene circuits.

blue green red Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Chem Biol, 25 May 2012 DOI: 10.1016/j.cbpa.2012.04.010 Link to full text
Abstract: Highly complex synthetic gene circuits have been engineered in living organisms to develop systems with new biological properties. A precise trigger to activate or deactivate these complex systems is desired in order to tightly control different parts of a synthetic or natural network. Light represents an excellent tool to achieve this goal as it can be regulated in timing, location, intensity, and wavelength, which allows for precise spatiotemporal control over genetic circuits. Recently, light has been used as a trigger to control the biological function of small molecules, oligonucleotides, and proteins involved as parts in gene circuits. Light activation has enabled the construction of unique systems in living organisms such as band-pass filters and edge-detectors in bacterial cells. Additionally, light also allows for the regulation of intermediate steps of complex dynamic pathways in mammalian cells such as those involved in kinase networks. Herein we describe recent advancements in the area of light-controlled synthetic networks.
8.

Light activation as a method of regulating and studying gene expression.

blue LOV domains Review
Curr Opin Chem Biol, 24 Oct 2009 DOI: 10.1016/j.cbpa.2009.09.026 Link to full text
Abstract: Recently, several advances have been made in the activation and deactivation of gene expression using light. These developments are based on the application of small molecule inducers of gene expression, antisense- or RNA interference-mediated gene silencing, and the photochemical control of proteins regulating gene function. The majority of the examples employ a classical 'caging technology', through the chemical installation of a light-removable protecting group on the biological molecule (small molecule, oligonucleotide, or protein) of interest and rendering it inactive. UV light irradiation then removes the caging group and activates the molecule, enabling control over gene activity with high spatial and temporal resolution.
Submit a new publication to our database